Lidar Technique: Basic Hardware Components (Lasers and Electronics)

Prof. Dr. Alex Papayannis

Head of the Laser Remote Sensing Unit (LRSU) National Technical University of Athens, Greece Website: http://lrsu.physics.ntua.gr/en Email: apdlidar@central.ntua.gr

The LIDAR Technique Atmosphere (molecules, atoms, aerosols)

Analog detection-Photon counting Unit

GPIB card

Typical LIDAR Experimental Set-up

The Lidar Principle

[Pal, S., Remote Sensing, 6, 8468-8493, 2014]

Lidar signal $S(z) \sim 1/z^2$

General physical properties:

-LIDAR: robust, compact, low power consumption, stability (alignment/optics/mechanical structure), low weight (airborne/space borne systems), easy to operate, 24/7 operationality, remote control, low-cost maintenance-operation,

-Housing: temperature-humidity controlled housing, compact with protection window, indirect solar radiation, weather-proof,

-Transportable (special campaigns).

Transmitter (Laser):

- -Single-wavelength & polarized laser beam
- High energy laser source
- -Wavelength: 0.266-10.6 um (several wavelengths tunable for special cases)
- High repetition rates (desired): several Hz to 20 some kHz.

Safety (laser Beam):

Eye-safe emission (exiting the protective window): Use convenient wavelengths + beam expander!

Operation Mode:

- -Day/nighttime, continuous, automated operation
- -Time resolution (several seconds to minutes)
- Spatial resolution (~15-100 m or better, depending on height)

Signal Received:

- Backscatter (molecules + aerosols)
- Atmospheric Background correction (averaged signal at high ranges)
- Electronic noise evaluation (use of pre-trigger)
- Depolarization channels

Laser Sources:

Typical laser sources: Nd:YAG (1.064um), XeCl (0.308um), Er:glass (1.54um), Er:YAG (2.94um), Tm,Ho:YAG (2um), CO₂ (10.6 um), etc.

Blue: Pump optical beam (diode laser or flash lamp) Red: emitted laser beam

Laser Sources:

https://en.wikipedia.org/wiki/List_of_laser_types

Laser Cavity (Type I-Solid state):

Laser Cavity (Type IA-Diode pumped solid state lasers):

Nanosecond pulses Up to several Joules/pulse Diode pumped multi-segmented Nd:YAG laser developed for European Space Agency @ NTUA

Evangellatos et al. (2013; 2014)

Laser Cavity:

Typical laser cavities: (multiple beams passages between 100% reflection mirrors and output couplers)

www.rp-photonics.com

Laser Cavity:

Typical laser cavities: (multiple beams passages between 100% reflection mirrors and output couplers)

Ring Cavity Resonator of Coherent, Inc. Verdi Green DPSS Laser

www.coherent.com

Optical Sources used in the NPL Ultraviolet and Infrared DIAL System

National Physical Laboratory (NPL), UK

Laser Cavity (Type II-Gas lasers-Excimer lasers):

http://www.twi-global.com/technical-knowledge/faqs/process-faqs/faq-what-is-an-excimer-laser/

Laser Cavity (Type III-Femtosecond lasers):

Mode-locked lasers

Output laser beam

SA: Saturable absorber mirror Gain medium OC: output coupler

Mode locking: The laser resonator contains either an **active** element (an **optical modulator**) or a nonlinear **passive** element (a **saturable absorber**), which causes the formation of an ultrashort pulse circulating in the laser resonator.

Passive mode-locking: The gain medium compensates for losses, and the saturable absorber mirror (SA) enforces pulse generation. Each time the circulating pulse hits the output coupler mirror (OC), a pulse is emitted in the output.

SA with very low losses at high energies!

www.rp-photonics.com

Femtosecond pulses Up to several mJ/pulse

Laser Sources:

The laser energy is distributed over several oscillating "modes", within the laser cavity

Applications:

- Detection of aerosols, molecules, clouds, etc.

Laser Sources:

b) Mono/Single-mode (single frequency): Injection seeded lasers

Evangellatos et al. (2013; 2014)

The laser energy is distributed over one single several oscillating "mode", within the laser cavity

Specs/Requirements:

-Very narrow laser linewidth (<1 MHz) [@1.54 um \rightarrow 1.3 MHz Doppler shift \leftarrow 1 m/s wind velocity]

Applications:

- Coherent transmitter in pulsed **Doppler** lidars (measurement of wind velocity + shear)
- High Spectral Resolution Lidars-HSRL (aerosol backscatter-extinction, wind velocity + shear)
- Temperature profiling, etc.

Common problems related to Laser Sources:

a) Beam power instability (e.g. 266 nm)

Performance Specifications	i		
Wavelength	Pulse Width ^s	Short Term Energy Stability ⁶	Long Term Power Drift ⁷
1064 nm	8–12 ns	±2%	<3%
532 nm	1–2 ns <1064 nm	±3%	<5%
355 nm	2-3 ns <1064 nm	±4%	<6%
266 nm	3-4 ns <1064 nm	±8%	<10%

6. Pulse-to-pulse stability for >99% of pulses, measured over a 1 hour period. 7. Over 8 hour period with temperature variations of $<\pm3^{\circ}$ C.

7. Over o nour period with temperature variations of <±5 c.

Source: Quanta Ray lasers (Spectra Physics)

b) Earth problems (a good earthing is required)

c) Stable input voltage is required

Laser Safety !

Athens, 02 05 10

Received : ~ 10^m photons Emitted : 10ⁿ photons m ~ 0 – 10-15 (depending on distance) n ~ 10-20

Photo-detectors (I)

PhotoMultiplier Tubes (PMTs)

Spectral Range: 110 nm – 1200 nm [lidars: 247 up to ~880 nm] www.hamamatsu.com

Pros: Very good conversion efficiency Cons: Only in the UV-VIS-beginning of NIR region

Photo-detectors (II)

Avalanche PhotoDiodes (APDs)

Spectral Range: APD-Si: 200 nm – 1100 nm APD-Ge: 800-1550 nm APD-InGaAs [lidars: 900-1500 nm]

Pros: Good conversion efficiency Cons: Bulky, only in the near IR

Photo-detectors (I)

PhotoMultiplier Tubes (PMTs) – Operating Principle

Photo-detectors (I)

PhotoMultiplier Tubes (PMTs) - Operating Principle for detecting pulsed (lidar) signals

High voltage divider circuit: divide the high voltage (800-1000 V) to the dynodes

Photo-detectors (I)

PhotoMultiplier Tubes (PMTs) - Housing

A proper metallic housing (magnetic shielding) is required to protect the very sensitive PMT from :

- external EM fields
- ambient temperature
- humidity

Photo-detectors (I)

PhotoMultiplier Tubes (PMTs) – Photocathode materials

The response of a PMT is specified by the **photocathode sensitivity**:

- Quantum efficiency (%):

QE = Nphotoel. emitted by the photocathode/Number incident photons

- Cathode radiant sensitivity (mA/W):

Photocurrent produced (mA) in response to the incident light power (W) $QE(\%)=[124/\lambda(nm)]$ * radiant sensitivity (mA/W)

- Cathode luminous sensitivity (µA/lm):

It relates the photocathode current to the human eye response

Current produced by an incident flux of 1 lumen from a Tungsten filament source (@2856 K)

Photo-detectors (I)

PhotoMultiplier Tubes (PMTs) – Photocathode materials

The response of a PMT is specified by the photocathode sensitivity

Photo-detectors (I)

PhotoMultiplier Tubes (PMTs) - Photocathode

Photo-detectors (I)

PhotoMultiplier Tubes (PMTs) - Photocathode

Photo-detectors (I)

PhotoMultiplier Tubes (PMTs) - Photocathode

Spectral response: 1 photon (W) \rightarrow anode (mA)

SPECTRAL RESPONSE 100 MULTIALKALI PHOTOCATHODE CATHODE RADIANT SENSITIVITY (mA/W) QUANTUM EFFICIENCY (%) 10 ï 1 BIALKALI PHOTOCATHODE ٨ ۱. 0.1 CATHODE RADIANT SENSITIVITY QUANTUM EFFICIENCY 500 600 700 800 900 1000 200 400 300 WAVELENGTH (nm)

Gain: 1 photon → Nr photo-electrons (e⁻) GAIN

Photo-detectors (I)

PhotoMultiplier Tubes (PMTs) – Spatial uniformity

Hint: Always use doublet lenses in front of the PMTs to direct the light into a diam ~ 3mm

Parallel to the dynodes

Simeonov, et al., 1999.

Photo-detectors (I)

PhotoMultiplier Tubes (PMTs) – Spatial uniformity

Photo-detectors (I)

PhotoMultiplier Tubes (PMTs) – Anode collection space

The anode collection should have a suitable geometry for:

- collecting all secondary electrons emitted by the last dynode

- minimizing space charge effects to ensure linear response in pulse-mode operation

- matching the anode impedance to the characteristic impedance of the output connection (e.g, signal digitizer).

Anode sensitivity = Cathode sensitivity * PMT Gain

Photo-detectors (I)

PhotoMultiplier Tubes (PMTs) – Problems

- Never exceed the maximum average DC anode current (< 100 μ A, or 5mV @50 Ω input \rightarrow Atmospheric background !)

- Never exceed the maximum voltage ratings
- After pulses (spurious pulses at low signal levels):

Main causes:

-Luminous reactions (light emitted by the electrodes due to electron bombardment by high level light pulses)

- Ionization of residual traces gases
- PMT lifetime ~ 1/number of incident photons (N_{ip})
- Change your PMT when its lifetime is exceeded !
- Linearity Non linearity (Nr of electrons collected ~ Nr of incident pulses)

PMT Linear region (output vs HV, with const. light level input)

Kokkalis, PhD Thesis (2014)

Photo-detectors (I)

PhotoMultiplier Tubes (PMTs) – Photon Counting mode

Photo-detectors (I)

PhotoMultiplier Tubes (PMTs) – Photon Counting mode

Photon counting regime:

Low light level: PMT responses **linearly** (the output signal is proportional to the incident light intensity),

High light level: PMT responses **NON-linearly** (the output signal is NOT proportional to the Incident light intensity) \rightarrow overlapping of light pulses (pulse pileup effect)

Photo-detectors (II)

(p⁻ region)

ionization.

Avalanch PhotoDiodes (APDs)

Photocathode

Gain 500 ti

Photon

Photo-

Photo-detectors (II)

Avalanch PhotoDiodes (APDs)

Photo-detectors (I-II)

PMTs - APDs– Anode dark current

Anode dark current (in total darkness the PMT still produces a small output current)

- Ohmic leakage currents (leakage currents between electrodes and the glass)
- Thermionic current (thermionic emission of electrons from the photocathode)

NTUA, EOLE data

Signal Detection

Analog to Digital Conversion (12-, 14-, 16-bit Digitizers)

Signal ADC & Digitization/Sampling (Analog signals)

 $\Delta t^* = 1/F_D$, $F_D = Signal sampling frequency (10-40 MHz \rightarrow ~ GHz)$

Example:

$$\begin{split} F_D = &10 \text{ MHz} \rightarrow \Delta t^* = &100 \text{ ns} \rightarrow \Delta z = &15 \text{ m} \\ F_D = &20 \text{ MHz} \rightarrow \Delta t^* = &50 \text{ ns} \rightarrow \Delta z = &7.5 \text{ m} \\ F_D = &40 \text{ MHz} \rightarrow \Delta t^* = &25 \text{ ns} \rightarrow \Delta z = &3.75 \text{ m} \\ F_D = &1 \text{ GHz} \rightarrow \Delta t^* = &1 \text{ ns} \rightarrow \Delta z = &0.15 \text{ m} \end{split}$$

Signal ADC & Digitization/Sampling (Analog signals)

Rule of thumb: Max Analog signal/2, e.g. for 40 mV input signal \rightarrow signal range 100 mV

Signal (Photon Counting mode)

Lidar Signal ->> Photon counting mode

3. NONPARALYZABLE SYSTEM

(Dead time correction)

$$N = \frac{S}{1 + S * \tau_d}$$

- N is the observed countrate
- S is the true countrate
- τ_d is the system dead time

While the paralyzable case is nonlinear equation, the nonparalyzable case can be easily inverted to

$$S = \frac{N}{1 - N * \tau_a}$$

As both cases are only a theoretical model, they are valid for lower countrates but fail when $S * \tau_d$ becomes larger than one. From a numerical point of view Eq. 2 can be only applied to a signal as long as

www.licel.com

(3) $N < \tau_d$

For each PMT a dead time (τ_d) has to be measured !!

Example:

Alt= 0.5 km \rightarrow N_{meas}=50 MHz, τ_d =3.8 ns \rightarrow S_{true}=61.75 MHz Alt= 3 km \rightarrow N_{meas}=10 MHz, τ_d =3.8 ns \rightarrow S_{true}=10.4 MHz All photon counting signals (low altitudes) have to me corrected for dead time (N_{meas}>10MHz)

Signal (Photon Counting mode)

Lidar Signal

Photon counting mode (Dead time correction)

Barbosa et al., 2014

Examples (I)

D D	ata Prev	view and Analysis	5																		_	
🛃 D	:\lidar\	RAWINTUAIDatal	og. dat																			
ID 723	USER Vapor	LOCATION Ath choose a	START DATE	START TI	ME ST(are displ	OP DATE Sayed to the i	TOP TIM <mark>right</mark> :20	E A RM07	40709.455 40709.524 40709.592	▲ Fil	e # 24	0:00										
724 725 726	Calipso Vapor Calipso	Athens Athens Athens	07/04/2007 12/04/2007 15/04/2007	09:45:50 18:54:20 23:11:10	07/ 12/ 16/	04/2007 1 04/2007 2 04/2007 0	2:19:20 0:58:10 1:51:20	RM07 RM07 RM07	40710.060 40710.124 40710.192 40710.260	User	All users	•										
121 Friga	Aerosol Si er A: 00	hots# Laser Fr.	17/04/2007	09:07:40	Alt	itude=	0200 0023.0	Z. Angle=	40710.324 = 28 = 17.0	✓ Local	tion All Location	•										
Frigg	er B: 00	00000 0000			Lat	itude=	0037.0	Pzero=	= 1000.0	*/*/	*											
r. # 0	WaveL. 355.00	Pol. Type Type	Scat. Type Elastic	Ch.# 4000	Bw.	Distance 52976.9	H. ¥ 850	Shots.# 4000	R/D(m¥) 0.500		Change D	в										
1	532.00 532.00	o AN o PC	Elastic	4000 4000	15.00 15.00	52976.9 52976.9	850 850	4000 4000	0.500 3.571		idit Databa	ase										
2	1064.00	O AN	Elastic	4000	15.00	52976.9	305	4000	0.500		Close	-1										
										*	Ciose											
140 140).0).0	/	After a	a str	on	g ba	ckso	catte	er (fro	om	clou	ıd) I	าด เ	use	ful	sigr	nal	ren	nair	١S		
120).0).0		A																			
200 24).0																					
- 80 70).0 1	J	ς Π																			
60 50).0).0		\mathbb{V}																			
40	0.0																					
30 20).0																					
:	5.8 0.0	0.5 1.0 :	1.5 2.0	2.5	3.0	3.5 4	ŧ.0 ·	4.5 5.0	5.5 H	6.0 eight (Km	6.5 I)	7.0	7.5	8.0	8.5	9.0	9.5	10.0	10.5	11.0	11.5	 12.0
-	start	0 \$ 6 (e 💿 💽) NTUA-pl	hotos	A	nalysis_9	_12	🕑 3 Microso	oft P	- W	1icrosoft V	Vord	E La	bVIEW			ata Previ	ew		< <u>574</u>	7:12 µµ

Examples (II)

Examples (III)

PROBLEM : (not stable signal > 7 km height)

Raw lidar signal with strong dust layer

_														
ID	USER	1100	ATION	START DATE	START TIM	E ST	OP DATE	STOP TIM	EA	RM1	361010.045	~	Provide Line	
479	Sceduler	Rou	tine Elas	10/06/2013	05:58:20	10/	06/2013	06:00:00		RM1	361010.063		Duration 107	135:40
480	Sceduler	Rou	tine_Elas	10/06/2013	06:14:20	10/	06/2013	06:16:00		RM1:	361010.081		File # 274	4
481	Sceduler	Rou	tine_Elas	10/06/2013	06:19:40	10/	06/2013	07:24:40		RM1	361010.113		Location	
482	Sceduler	Rou	tine_Elas	10/06/2013	07:43:20	10/	06/2013	15:18:20		RM1	361010.131		Al Locatio	n 🔽
483	Sceduler	Rou	tine_Elas	10/06/2013	15:22:10	10/	06/2013	15:27:10	~	RM1:	361010.145	~	User	
	Sh	ots# La	ser Fr.	Altitude	0028	2 Z.	Angle=	00 /	A. Ar	gle=	00		All users	. ~
Trigge	er A: 000 er B: 000	00000	0010	Latitude=	= 0032	.0	Pzero=	1004.5					*/*/*/	
Tr. #	WaveL.	Pol. Typ	e Type	Scat. Type	Ch.#	Bw.	Distanc	e H.V	Sho	ts.#	R/D(m¥)	^	C. th D. L	
0	355.00	.0	AN	Elastic	8192	7.50	61440.	0 880	9	99	0.500	i	Edit Data	Dase
0	355.00	.0	PC	Elastic	8192	7.50	61440.	0 880	9	99	3.175		Dim	
1	532.00	.0	AN	Elastic	8192	7.50	61440.	0 910	9	99	0.100		Pidy	_
1	532.00	.0	PC	Elastic	8192	7.50	61440.	0 910	9	99	3.175			
2	1064.00	.0	AN	Elastic	8192	7.50	61440.	0 360	9	99	0.500			
									<u> </u>			!		
													Close	e
									\vdash					
2.4 2.4 2.3 2.3	2.4 2.4 2.4 2.4 2.3 2.3 2.2 2.2													
2.2 20	000.0	5000.0	7500.0	10000.0	12500.0	1500	0.0 1750	00.0 200	00.0	225	00.0 250	" 00.0	27500.0	30000.

Problem due to not good earthing or too high HV

Examples (IV)

Raw lidar signal with dust layer

S Dat	tabaro									_			
De Da	tabase												
ID	USER	LOCA	TION	START DATE	START TIM	EST	OP DATE	STOP TIM	E 🔨	RM1	3A1410.175	^	Duration 02:16:40
529	Sceduler	Routin	e_Flac	14/10/2013	09:39:20	14	/10/2013	09:39:20		RM1	3A1410.193		Daradon 102.10.40
530	Sceduler	Routin	ne_Elas	14/10/2013	09:41:40	14	/10/2013	09:43:20		PM1	301410.211		File # 82
531	Sceduler	Routin	ne_Elas	14/10/2013	09:57:50	14	/10/2013	10:04:30		RM1	3A1410.243		Location
532	Sceduler	Routin	ne_Elas	14/10/2013	10:07:50	14	/10/2013	10:12:50	B	RM1	3A1410.261		Al Location 🛛 😽
533	Sceduler	Routin	ie_Elas	14/10/2013	10:17:50	14	/10/2013	12:33:00	\sim	RM1	3A1410.275	~	Liser
	sh	ots#_Lase	er Fr.	Altitude	: 021	2.2	Angle=	00	A. An	ole -	00		All users
Trico	A 00	01000 00	110	Longitude	0028	0	Tzero=	28.0					Date
Trigg	D: 000	00000 00	10	Longitude-	- 0020.	~	Daeso	1019.7					+/+/+/
Trigg	er B: UU	00000 00	10	Latitude=	= 0032.	U	P2ero=	1018.7					777
Tr. #	WaveL.	Pol. Type	Туре	Scat. Type	Ch.#	Bw.	Distance	e H.¥	Sho	ts.#	R/D(m¥)	^	Edt Database
0	355.00	.0	AN	Elastic	8192	7.50	61440.0) 880	10	00	0.500		Edit Database
0	355.00	.0	PC	Elastic	8192	7.50	61440.0	0 880	10	100	3.175		Direct
1	532.00	.0	AN	Elastic	8192	7.50	61440.0	910	10	100	0.100		Play
1	532.00	.0	PC	Elastic	8192	7.50	61440.0	910	10	100	3.175		
2	1064.00	.0	AN	Elastic	8192	7.50	61440.0	360	10	100	0.500		
												i I	Close
												~	
2.5		-											
				D	ateset info						ursor 15	97.5	i 3.48 💶 🍋 🗂
				1061 n	m								
				1004 11									
			J					. Ы				L d	المالية المالية
No.		N 11 1		Ι		L h	l I. I.	in abbi.	եես	ыU	ու հատկես է	Th	A CALLER & CALLER AND
		· · · · ·	ndr.	بالدالي	بالمراب المراب	d illin	ա հենդել	l data di din di ka	ղիկե	וייריי	עמאן דרייין	W.	a di a di ba
		, f' II	1.1.1	1900 F 11 11 11 11	מיקיוורו ייוק	111	ւ եւ եւ ել եր	ы. т			r 1.		
				անիկիսու հա	· · · · · ·					16 - H		La	a da la colori
				1			1.1.1.1.	ويتأهيه وارت	al Itali	niudu	فللغان البقادية	u dal 11	الثانان القبلية بالشاا
		երե	սուսե	مت التابات	الفالانية	հենել	ash kalatik	di kana h	406	1.11	י עוןי זוזיו	1111	100 P I 11 P
		""	فالمناها	i délat Jadébin, Kila				י ויון י	· • •	I		L '	1 1 1
		1	L 16. II I		י יייוין	111.					1		
			I I	1 11	'I								
2.4													
5	00.0 250	0.0 5000	.0 7	500.0 10000	0.0 12500	.0 1	5000.0 17	2500.0 2	0000	0 2	2500.0 250	000.0	27500.0 30000.
						- A	ltitude (m)						

Problem due to not good earthing or too high HV

Examples (V)

Noise file (dark file)

🛃 Da	tabase													_	
ID	USER	LOCA	ATION	START DATE	START TIM	E ST	OP DATE	STO	P TIME	•	RM1	3A1409.215	^	Duration 00	05.00
525	Sceduler	Extr	a_Elastic	16/07/2013	15:39:00	16,	/07/2013	15:4	2:20		RM1	3A1409.233		Duration 100.	05.00
526	Sceduler	Rout	ine_Ram	25/07/2013	19:46:20	25	/07/2013	21:2	9:50		RM1	3A1409.251		File # 3	
527	Sceduler	Rout	ine_Ram	25/07/2013	21:32:50	25	/07/2013	21:3	7:50					Location	
528	Sceduler	Rout	ine_Elas	14/10/2013	09:21:50	14,	/10/2013	09:2	5:10					Al Location	
529	Sceduler	Rout	ine_Elas	14/10/2013	09:39:20	14,	/10/2013	09:3	9:20	~			×	User	
	Sh	ots# La:	ser Fr.	Altitude	= 021	2 Z.	Angle=		00 4	. An	gle=	00		All users	~
Trigg	er A: 000	00999 0	010	Longitude=	0028.	0	Tzero=	23	7.0					Date	
Trigg	er B: 000	00000 0	010	Latitude=	0032.	.0	Pzero=	1018	8.7					+1+1+1	
Tr. #	WaveL.	Pol. Type	: Type	Scat. Type	Ch.#	Bw.	Distan	ce 🛛	H. V	Sho	ts.#	R/D(m¥)	^	Con public	
0	355.00	.0	AN	Elastic	8192	7.50	61440	.0.	880	- 9	99	0.500		Edit Datat	base
0	355.00	.0	PC	Elastic	8192	7.50	61440	.0	880	- 9	99	3.175		Disc	
1	532.00	.0	AN	Elastic	8192	7.50	61440	.0	910	- 9	99	0.100		Pidy	
1	532.00	.0	PC	Elastic	8192	7.50	61440	.0	910	- 9	99	3.175			
2	1064.00	.0	AN	Elastic	8192	7.50	61440	.0 :	360	- 9	99	0.500			
														Close	
													~		
2.0 AE 2.7	2.8 Cursor 1597.5 2.71 • • •														
2.7	00.0 250	0.0 500	0.0 7	500.0 10000	0.0 12500	.0 19	5000.0 1	7500.	0 20	0000	.0 2	2500.0 25	000	.0 27500.0	30000.

References – Books/Papers

Barbosa, H., et al., A permanent Raman lidar station in the Amazon: description, characterization and first results, Atmos. Meas. Tech., 7, 1745–1762, 2014.

Baudis, L., et al., Measurements of the position-dependent photo-detection sensitivity of the Hamamatsu R11410 and R8529 photomultiplier tubes, arXiv:1509.04055v1, 2015.

Evangelatos, C., P. Bakopoulos, G. Tsaknakis, D. Papadopoulos, G. Avdikos, A. Papayannis, G. Tzeremes, Continuous wave and passively Q-switched Nd:YAG laser with a multi-segmented crystal diode-pumped at 885 nm, Applied Optics, 52, 8795-8801, 2013.

Evangelatos, C., G. Tsaknakis, P. Bakopoulos, D. Papadopoulos, G. Avdikos, A. Papayannis, and G. Tzeremes, Q-switched laser with multi-segmented Nd:YAG crystal pumped at 885 nm for remote sensing, Photonics Technology Letters 26, 1890-1893, 2014.

Fiocco, G., and Smullin, L.D., Detection of scattering layers in the upper atmosphere by optical radar. Nature, **199**, 1275–1276, 1963.

Grath, A., et al., Injection-seeded single frequency, Q-switched Er:glass laser for remote sensing, Appl. Opt., 5706-5709, 1998.

Hulburt, E.O., Observations of a searchlight beam to an altitude of 28 kilometers. J. Opt. Soc. Am., 27, 344-377, 1937.

Kokkalis, P., Study of the tropospheric aerosols using ground-based and space-borne techniques – Measurement analysis and statistical processing, Ph.D. Thesis (in Greek), NTUA, Greece, 2014.

Marcu, L., et a., Fluorescence Lifetime Spectroscopy and Imaging: Principles and Applications in Biomedical Diagnostics, 570 pp., CRC Press, 2014.

McGrath, A., Munch, J., Smith, G., Veitch, P., Injection-seeded, single frequency, Q-switched Er:glass laser for remote sensing, Appl. Opt., 37, 5706-5709, 1998.

Measures, R. M.: Lidar Remote Sensing: Fundamentals and Applications, Krieger Publishing Company, Malabar, Florida, 2nd Edn., 1992.

Müller, J. W.: Dead-time problems, Nucl. Instrum. Methods, 112, 47–57, doi:10.1016/0029-554x(73)90773-8, 1973.

Newsom, R. K., Turner, D. D., Mielke, B., Clayton, M., Ferrare, R., and Sivaraman, C.: Simultaneous analog and photon counting detection for Raman lidar, Appl. Optics, 48, 3903–3914, doi:10.1364/AO.48.003903, 2009.

Siegman, A., Lasers, University Science Books, 1986.

Simeonov, V., et al., Influence of the photomultiplier tube spatial uniformity on lidar signals, Appl. Opt., 38, 5186-5190, 1999.

Stanford Research Systems. In Signal Recovery with Photomultiplier Tubes, Photon Counting, Lock-In Detection, or Boxcar Averaging?, Stanford Research Systems, AN 4, 15 pp., 1995.

References – Websites

www.hamamatsu.com

www.coherent.com

www.licel.com

www.olympusmicro.com

www.rp-photonics.com/beam_profilers.html