Design study for an airborne multi-wavelength, multi-depolarization HSRL

Ilya Serikov

Max Planck Institute for Meteorology

Outline

- HSRL task and the cross-talk suppression required
- Fabry-Pérot Interferometer (FPI) for HSRL channel
 - \circ The concept
 - FPI parameters in the scope of application
 - Filtering efficiency expected
 - Stability issues

Atmospheric response to laser pumping

für Meteorologie

Pure rotational Raman spectra of N₂ and O₂

für Meteorologie

Example for air mixture at 1 atm and 273 K. Excitation at 355 nm.

Molecular and aerosol elastic scattering

Scattering ratio **1.05**, λ = 355 nm, T = 300 K

Molecular and aerosol elastic scattering

Scattering ratio **100**, λ = 355 nm, T = 300 K

Scattering ratio in clouds

	355 nm	532 nm	1064 nm
lce cloud @ 10km β _π = 0.2 /km/sr	80	370	6,200
Droplet cloud @ 5km β _π = 0.8 /km/sr	180	880	14,600

Suppression required

 $S = M + K \cdot A$ \leftarrow signal in molecular channel M molecular scattering; A aerosol scattering; K cross-talk

 $k = K \pm \delta k$ \leftarrow estimated cross-talk

 $m = S - k \cdot A \quad \leftarrow \text{estimated molecular signal} \\ m = M \pm \delta k \cdot A$

 $\frac{\delta k}{K} \le \frac{1}{K} \cdot \frac{m - M}{M} / \frac{A}{M} \quad \leftarrow \text{cross-talk estimation accuracy}$

A /114	$\Delta k/K \ (\delta m/M = 1\%)$					
A/M	$K = 10^{-1}$	$K = 10^{-2}$	$K = 10^{-3}$			
10	1%	10%	—			
100	0.1%	1%	10%			
1000	0.01%	0.1%	1%			

The concept logic:

- Fabry-Pérot Interferometers as HSRL filter at 355nm (possibly also at 532nm and 1064nm)
- 2. lodine filtering technique at 532nm (alternative to interferometers)
- **3. Narrow field-of-view** receiving telescopes (to low the beam divergence on interferometer)
- 4. Beam expansion (to fit to the receiving field-of-view)
- 5. Low laser pulse energy (to conform the eye-safety requirements)
- 6. High pulse repetition rate (to increase the number of photons emitted)
- 7. Fiber optics decoupling telescope and interferometers (for better mechanical stability)
- 8. Extra telescopes for depolarization channel (multimode fibers do not maintain polarization)
- **9. Extra "near"-range telescope** (to extend the range for extinction measurement)

Fabry-Pérot Interferometer (FPI)

Transmission and reflection

$$f_T = \frac{1}{1 + \frac{4R}{(1-R)^2} \sin^2(2\pi\nu nd\cos\theta)} \qquad f_R = 1 - f_T$$

Phase matching criterion:

$$2\pi\nu nd\cos\theta = \pi k, k \in N$$

Interferometer tuning concept

Transmission for axial divergent beam

 $F_L = 120 \text{ mm}; R = 0.44; d = 30 \text{ mm}; n = 1$

Transmission for off-axial divergent beam

For off-axis configuration the pinhole is displaced from axis by pinhole radius

$$R = 0.44; d = 30 mm; n = 1$$

355 nm

Clear aperture impact

Impact of mirror reflection coefficient

Effect of mirror sphericity

(a) constant beam diameter, clear aperture completely filled

mirror flatness $\lambda/100$; R = 0.44; d = 30 mm $d_p = 0.2 \text{ mm}$; $F_L = 120 \text{ mm}$; $D_{FPI} = 40 \text{ mm}$; n = 1

Effect of mirror sphericity

Max-Planck-Institut für Meteorologie mirror flatness $\lambda/100$; R = 0.44; d = 30 mm $d_p = 0.2 \text{ mm}$; $F_L = 120 \text{ mm}$; $D_{FPI} = 40 \text{ mm}$; n = 1

Effect of mirror sphericity

für Meteorologie

 $d_p = 0.2 \text{ mm}; F_L = 120 \text{ mm}; D_{FPI} = 40 \text{ mm}; n = 1$

"Fiber-lens-fiber" optical scrambler

- input fiber scrambles the beam across the fiber aperture
- lens translates the beam angle into the focusing point position
- output fiber scrambles the beam across the fiber aperture

Filtering efficiency

Reflection efficiency for molecular signal

$$Q_m^{[N]} = \int_{-\infty}^{+\infty} I_m (f - f_0) (1 - f_T(f))^N df$$

Reflection efficiency for aerosol signal

$$Q_{a}^{[N]} = \int_{-\infty}^{+\infty} I_{L}(f - f_{0}) (1 - f_{T}(f))^{N} df$$

Cross-talk suppression factor

$$K^{[N]} = rac{Q_m^{[N]}}{Q_a^{[N]}}$$

N – number of sequential FPI filtering cascades

Filtering efficiency, 1xFPI

355 nm

Max-Planck-Institut für Meteorologie $\Delta f_{355} = 135 \text{ MHz}$ $d_p = 0.2 \text{ mm}; F_L = 120 \text{ mm}; D_{FPI} = 40 \text{ mm}; F_d = 30; n = 1$

Filtering efficiency, 2xFPI

355 nm

Max-Planck-Institut für Meteorologie $\Delta f_{355} = 135 \text{ MHz; } d = 30 \text{ mm}$ $d_p = 0.2 \text{ mm; } F_L = 120 \text{ mm; } D_{FPI} = 40 \text{ mm; } F_d = 30; n = 1$

Filtering efficiency, 3xFPI

355 nm

 $\Delta f_{355} = 135 \text{ MHz; } d = 30 \text{ mm}$ $d_p = 0.2 \text{ mm; } F_L = 120 \text{ mm; } D_{FPI} = 40 \text{ mm; } F_d = 30; n = 1$

Filtering efficiency, summary

A. Reflection coefficient optimized for UV

	355 nm		532 nm			1064 nm			
	R	Suppr.	Eff., %	R	Suppr.	Eff., %	R	Suppr.	Eff., %
1	0.2	28		0.2	46	23	0.2	80	10
2	0.35	350	30	0.35	1140	22	0.35	5900	7
3	0.44	2300		0.44	14500	22	0.44	2.4·10 ⁵	7

B. Reflection coefficient optimized for each wavelength

	355 nm		532 nm			1064 nm			
#	R	Suppr.	Eff., %	R	Suppr.	Eff., %	R	Suppr.	Eff., %
1	0.2	28		0.26	39		0.47	45	
2	0.35	350	30	0.43	650	30	0.63	850	30
3	0.44	2300		0.52	5600		0.7	8300	

C. Scattering ratio in clouds

80÷180	370÷880	6,200÷14,600
--------	---------	--------------

Polarization-sensitive decoupling

PBC – Polarizing Beam splitting Cubes; WP – quarter-Wave Plates

für Meteorologie

Stability

Phase matching criterion

- a) Frequency, (f)
 - o laser frequency instability,
 - Doppler shift
 - due to axial wind,
 - due to aircraft pitch-angle bias,
- b) Effective mirror spacing, ($n \cdot d$)
 - thermal expansion of spacers,
 - \circ temperature of air in the mirror gap,
 - \circ pressure of air in the mirror gap,
- c) Incident angle, (θ)

$$f_{\theta} \pm \Delta f$$

 $f_0 \pm 2 f_0 V/c$ $f_0 \pm 2 f_0 V_A \sin(\phi)/c$

 $d_0 \pm d_0 \cdot CTE \cdot T$ $\delta n \sim 1 / T$ $\delta n \sim P$

Thermal expansion impact

3xFPI, 355 nm

 $\Delta f_{355} = 135 \text{ MHz}; R = 0.44; d = 30 \text{ mm}$ $d_p = 0.2 \text{ mm}; F_L = 120 \text{ mm}; D_{FPI} = 40 \text{ mm}; F_d = 30; n = 1$

Air temperature impact 3xFPI, 355 nm Air in mirror gap Cross-talk suppression (normalized) T₀= 30⁰C; **P₀= 1 atm** 1.00 0.98 0.96 0.94

Temperature bias, K

0.00

0.01

0.92

-0.03

-0.02

-0.01

 $\Delta f_{355} = 135 \text{ MHz}; R = 0.44; d = 30 \text{ mm}$ $d_p = 0.2 \text{ mm}; F_L = 120 \text{ mm}; D_{FPI} = 40 \text{ mm}; F_d = 30$

0.03

0.02

± 0.02 K

Air temperature impact

3xFPI, 355 nm

 $\Delta f_{355} = 135 \text{ MHz}; R = 0.44; d = 30 \text{ mm}$ $d_p = 0.2 \text{ mm}; F_L = 120 \text{ mm}; D_{FPI} = 40 \text{ mm}; F_d = 30$

Air pressure impact

3xFPI, 355 nm

 $\Delta f_{355} = 135 \text{ MHz}; R = 0.44; d = 30 \text{ mm}$ $d_p = 0.2 \text{ mm}; F_L = 120 \text{ mm}; D_{FPI} = 40 \text{ mm}; F_d = 30$

Tuning for "1064 & 532 & 355"

Mechanical stability

3xFPI, 355 nm

Incident angle bias, mrad

Conceptual optical layout

FPI alignment control by analyzing interference pattern of He-Ne light

The standard deviation of fringe position (i.e. fringe radius) was measured to be about 0.24 pixel that corresponds to mirror spacing instability of 0.2 nm.

Depolarization channel, principle layout

Depolarization channel, 3D-model

Thank you!

